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We analyze nuclear-spin dynamics in quantum dots and defect centers with a bound electron under electron-
mediated coupling between nuclear spins due to the hyperfine interaction �“J coupling” in NMR�. Our analysis
shows that the Overhauser field generated by the nuclei at the position of the electron has short-time dynamics
quadratic in time for an initial nuclear-spin state without transverse coherence. The quadratic short-time
behavior allows for an extension of the Overhauser-field lifetime through a sequence of projective measure-
ments �quantum Zeno effect�. We analyze the requirements on the repetition rate of measurements and the
measurement accuracy to achieve such an effect. Further, we calculate the long-time behavior of the Over-
hauser field for effective electron Zeeman splittings larger than the hyperfine coupling strength and find, both
in a Dyson-series expansion and a generalized master-equation approach, that for a nuclear-spin system with a
sufficiently smooth polarization the electron-mediated interaction alone leads only to a partial decay of the
Overhauser field by an amount of the order of the inverse number of nuclear spins interacting with the electron.
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I. INTRODUCTION

Technological advancements have made it possible to
confine very few electrons in a variety of nanostructures such
as nanowires, quantum dots, donor impurities, or defect
centers.1–22 One driving force behind these achievements is a
series of proposals for using the spin of an electron as a qubit
for quantum computing.23–25 This spin interacts with the
nuclear spins in the host material via the hyperfine interac-
tion. While this interaction leads to decoherence of the
electron-spin state, on one hand, it also provides an opportu-
nity to create a local effective magnetic field �Overhauser
field� for the electron by inducing polarization in the nuclear-
spin system, which could be used, e.g., for rapid single-spin
rotations.26 Polarizing the nuclear-spin system is also one
possible way to suppress hyperfine-induced decoherence27,28

or it can be used as a source of spin polarization to generate
a spin-polarized current. In any case, controlling the dynam-
ics of the Overhauser field and, in particular, to prevent its
decay, is thus of vital importance in the context of spintron-
ics and quantum computation.29

In GaAs quantum dots the Overhauser field can become
as large as 5 T. The build up, decay, and correlation time of
the Overhauser field have been studied in a number of
systems,30–45 suggesting time scales for the decay on the or-
der of seconds, minutes, or, in one case, even hours.46

In this paper we address the question: How can a large
Overhauser field be preserved? That is, how can the
Overhauser-field decay be suppressed or even prevented. The
dynamics of the Overhauser field is governed by the mutual
interaction between the nuclear spins. There is on one hand
the direct dipolar coupling between the nuclear spins. On the
other hand, due to the presence of a confined electron, there
is also an indirect interaction: The coupling of the nuclear
spins to the electron via the hyperfine interaction leads to an
effective interaction between the nuclear spins that is known
as the electron-mediated interaction. While the effect of this

electron-mediated interaction on the decoherence of the elec-
tron has been studied previously,47–49 theoretical studies of
the decay of the Overhauser field have so far studied direct
dipole-dipole interaction, and the effect of the hyperfine in-
teraction was taken into account through the Knight shift that
the electron induces via the hyperfine interaction.50 In this
paper we investigate the effect of the electron-mediated in-
teraction between nuclear spins on the dynamics of the Over-
hauser field. While the direct dipolar coupling is always
present, it can be weaker than the electron-mediated interac-
tion for magnetic fields that are not too large and may be
further reduced via NMR pulse sequences or by diluting the
concentration of nuclear spins.51 We find in our calculation
that for effective electron Zeeman splittings � �sum of Zee-
man splittings due to the external magnetic and Overhauser
fields� larger than the hyperfine coupling strength A, the de-
cay of the Overhauser field due to the electron-mediated in-
teraction is incomplete, i.e., that only a small fraction of the
Overhauser-field decays. In a short-time expansion that is
valid for � larger than A /�N, where N is the number of
nuclear spins with which the electron interacts, we find a
quadratic initial decay on a time scale ��=1� �e=N3/2� /A2.
We show that by performing repeated projective measure-
ments on the Overhauser field, a quantum Zeno effect oc-
curs, which allows one to preserve the Overhauser field even
for relatively small effective electron Zeeman splittings
larger than A /�N. Overall, we thus obtain the following pic-
ture: The Overhauser field can be preserved either by apply-
ing a large external magnetic field �it only decays by a small
fraction for ��A� or by performing repeated projective
measurements on the Overhauser field �with our calculation
for the short-time dynamics being valid for ��A /�N�.

In Sec. II we briefly review the quantum Zeno effect and
give the corresponding main results for the case of the Over-
hauser field. We start our detailed discussion in Sec. III by
writing down the Hamiltonian for the hyperfine interaction
and by deriving an effective Hamiltonian for the electron-
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mediated interaction. In Sec. IV we derive an expression for
the short-time behavior of the Overhauser-field mean value.
In Secs. V and VI we address the long-time decay of the
Overhauser field due to the electron-mediated interaction.
Some technical details are deferred to Appendixes A and B.

II. ZENO EFFECT

The suppression of the decay of a quantum state due to
frequently repeated measurements is known as the quantum
Zeno effect. The concept of the quantum Zeno effect52 is
almost as old as quantum mechanics53,54 and it remains one
of the most intriguing quantum effects. It has been studied
intensively from the theoretical side55–57 and also experimen-
tal evidence has been found in recent years.58

Let us consider a two-level system initialized to the ex-
cited state �e� possibly coupled to an environment initially in
state �E so that the composite system is initialized to ��0�
= �e��e� � �E. The state of the two-level system evolves and
may decay to the ground state under the action of a Hamil-
tonian H for time t�0. At short times, the survival probabil-
ity Ps in the excited state can be expanded in powers of the
elapsed time t: Ps�t�=1+ �Ps�1t+ �Ps�2t2 /2+ . . . . For the
given initial conditions, the t-linear term is necessarily zero:
�Ps�1=−i TrE�e��H ,��0���e�=0. If �Ps�2�0, the evolution of
Ps at sufficiently short times is given by Ps�t�=1−cst

2 /�s
2

with the constant cs and the time scale �s being system de-
pendent. A projective measurement at time �m resets the sys-
tem to the excited state with probability Ps��m�. Repeating
the measurement m times at intervals �m	�s, the survival
probability is Ps,meas�m�m�= �1−cs�m

2 /�s
2�m	1−csm�m /

��s
2 /�m� for csm�m

2 /�s
2	1. The survival probability at time

t=m�m is thus increased due to the frequently repeated mea-
surements; instead of a quadratic decay on a time scale �s
without measurements, we have a linear decay on a time
scale �s

2 /�m.
A more complex observable such as the mean of the

Overhauser-field z component �hz�t��=Tr
hz��t�� �see Eq.
�6�� may also show a Zeno effect. Whether �hz�t�� shows an
initial quadratic decay is, however, not obvious and actually
depends on the initial state of the nuclear-spin system �I�0�
�see the first paragraph of Sec. IV below for details�. For the
short-time behavior of �hz�t��, we expand in a Taylor series,

�hz�t�� = �hz�0�� + t�hz�1 +
t2

2
�hz�2 + . . . , �1�

with �hz�n=dn�hz�t�� /dtn �t=0. If �hz�1=0, the t-linear term van-
ishes and the initial decay is quadratic in time. In Sec. IV we
find that �hz�1=0 under the condition that the initial nuclear-
spin density matrix is diagonal in a basis of hz eigenstates. In
this case the initial decay is of the form

�hz�t��
�hz�0��

= 1 − c
t2

�e
2 . �2�

The time scale �e and the constant c are given below in Eqs.
�17� and �18�, respectively.

Let us now consider a sequence of repeated measurements
of the Overhauser field hz�t�. In the context of quantum dots,

several proposals to implement such measurements have
been put forward. These proposals take advantage of opti-
cally active dots,59 gated double quantum dots in the spin-
blockade regime,60 or phase-estimation methods61 �see Ap-
pendix B for more details�. A measurement of hz shall be
performed after a time �m. If this measurement is projective,
i.e., if it sets all the off-diagonal elements of the density
matrix in a basis of hz eigenstates to zero �we discuss re-
quirements on the accuracy of the measurement in Appendix
B�, the dynamics after �m again follows Eq. �2�. Repeating
the measurement at times 2�m ,3�m , . . . leads to a change in
the decay of the Overhauser field in the same way as we
described it for the two-level system above,

�hz�t��Zeno

�hz�0��
= 1 − c

t

�Zeno
, �Zeno =

�e
2

�m
. �3�

Instead of a quadratic decay 
t2 /�e
2 we have a linear decay


t /�Zeno with �Zeno=�e
2 /�m. We note that the expression for

�hz�t��Zeno in Eq. �3� is only strictly valid at times m�m with
m being a positive integer. Between these times �hz�t��
changes according to Eq. �2�. The derivation of Eq. �3� re-
quires cm�m

2 /�e
2=ct /�Zeno	1. Figure 1 shows the Zeno ef-

fect, i.e., the difference between �hz�t�� / �hz�0�� and
�hz�t��Zeno / �hz�0��.

In addition to the requirements on the measurement accu-
racy �see Appendix B�, the results in this section rest on the
following separation of time scales:

�pm 	 �m 	 �e,�x, �4�

where �pm is the time required to perform a single measure-
ment and �x is the time scale up to which the short-time
expansion for �hz�t�� is valid. In general, �x can be shorter
than �e. Further, the calculation for �e uses an effective
Hamiltonian that neglects transfer of angular momentum
from the electron to the nuclei and thus leads to an error in
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FIG. 1. Effect of projective measurements at time intervals
�m=�e /10 on the time evolution of the Overhauser-field expectation
value �hz�t��. Due to the Zeno effect, the decay with measurements
is 1−ct /�Zeno rather than 1−ct2 /�e

2 without measurements, where
�Zeno=�e

2 /�m. The formula 1−ct /�Zeno for the decay with measure-
ment is only strictly valid at times t=m�m with m being a positive
integer. After the measurement at t=m�m the decay is again qua-
dratic with time dependence �hz�m�m�� / �hz�0��−c�t−m�m�2 /�e

2

�broken lines�.
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�hz�t�� / �hz�0�� of amplitude ��1 /N��A /�N��2 �see the dis-
cussion after Eq. �8��. A specific case �fully polarized nuclear
state� where the short-time expansion has only a very limited
range of validity is discussed in Sec. IV. For the systems
studied in experiment, we expect �x to be comparable to or
longer than �e, since the experiments performed so far show
time scales for the decay of �hz�t�� on the order of seconds,
minutes, or, in one case, even hours.46 We note that it may be
a demanding task to perform the fast and precise measure-
ments required to obtain a Zeno effect in the present context.
Still, experimental progress in the control of the nuclear
field, such as that shown in Ref. 46, suggests that such mea-
surements may be within reach in the near future.

We continue our discussion by deriving the effective
Hamiltonian we use both for calculating short-time dynamics
and the long-time behavior of �hz�t��.

III. HAMILTONIAN

We aim to describe the dynamics of many nuclear spins
surrounding a central-confined electron spin in a material
with an s-type conduction band �e.g., GaAs, Si, etc.�, where
the dominant type of hyperfine interaction is the Fermi con-
tact hyperfine interaction. The electron may be confined in
many nanostructures such as nanowires, quantum dots, or
defect centers. Under the assumption that other possible
sources of nuclear-spin dynamics, such as nuclear quadrupo-
lar splitting, are suppressed,62 the two strongest interactions
between nuclear spins in these nanostructures are the
electron-mediated interaction �“J coupling” in NMR �Refs.
63 and 64�� and the direct dipole-dipole interaction. It turns
out that, for a large number of nuclei N and up to magnetic
fields of a few tesla �for GaAs�, the contribution of the
electron-mediated interaction to the initial decay of the Over-
hauser field is dominant �see Appendix A�. The Hamiltonian
contains three parts: the electron and nuclear Zeeman ener-
gies and the Fermi contact hyperfine interaction,

H = He + Hn + Hen = �zSz + �z

k

Ik
z + S� · h� . �5�

Here, the operator

h� = 

k

AkI�k �6�

is the Overhauser field. Further, S� is the electron spin and I�k
is the nuclear spin at lattice site k that couples with strength
Ak=A
0���rk��2 to the electron spin, where A=
kAk is the
total hyperfine coupling constant, 
0 is the volume occupied
by a single-nucleus unit cell, and ��rk� is the electron enve-
lope wave function. We define the number of nuclear spins N
interacting with the electron as the number of nuclear spins
within an envelope-function Bohr radius of the confined
electron.27 The Bohr radius aB for an isotropic electron en-
velope is defined through27 ��rk�=��0�e−�rk / aB�q/2, where
q=1 gives a hydrogenlike wave function and q=2 a Gauss-
ian. Finally, �z and �z are the electron and nuclear Zeeman
splittings, respectively �we consider a homonuclear system�.
We derive an effective Hamiltonian for the electron-mediated

interaction between nuclear spins, which is valid in a suffi-
ciently large magnetic field. Using a standard Schrieffer-
Wolff transformation65 Heff=eSHe−S, to lowest order in Hen,
with the transformation matrix S=
kAk���z+hz−�z
+Ak /2�−1S+Ik

−− ��z+hz−�z−Ak /2�−1S−Ik
+� /2, which elimi-

nates the off-diagonal terms between electron and nuclear
spins, we find the effective Hamiltonian Heff�H0+V �simi-
lar to Refs. 47, 49, and 66�, where

H0 = �zSz + �z

k

Ik
z + Szhz, �7�

V =
1

8

kl

AkAl��1

2
+ Sz��Bk

+Ik
−Il

+ + Il
−Ik

+Bk
+�

− �1

2
− Sz��Bk

−Ik
+Il

− + Il
+Ik

−Bk
−�� . �8�

Here, Bk
�=1 / ��z−�z+hz�Ak /2� and the raising and lower-

ing operators are defined as S�=Sx� iSy and similarly for h�

and Ik
�. We note that Heff neglects the transfer of spin polar-

ization from the electron to the nuclei. The electron transfers
an amount of angular momentum to the nuclear system on
the order �A /�N��2	1 for ��A /�N.27,67,68 Under the as-
sumption that this amount is distributed equally among the N
nuclear spins that interact appreciably with the electron, this
results in a change in the average nuclear spin of order
��1 /N��A /�N��2	1 /N. For ��A these contributions are
thus suppressed by a factor of O�1 /N� compared to the maxi-
mum decay of �hz�t�� under Heff, which is typically of
O�1 /N� �see Secs. V and VI�. For very special initial states
where Heff leads to no dynamics, e.g., for uniform polariza-
tion, the transfer of spin from the electron to the nuclei is the
only source of nontrivial nuclear-spin dynamics and there-
fore should be taken into account. We discuss one such initial
state, namely, a fully polarized nuclear system, in Sec. IV.

In the following we assume I=1 /2 �Ref. 69� and neglect
Ak in Bk

�, which are valid up to corrections suppressed by
Ak / ��z−�z+hz�. We further replace hz in the denominator of
Bk

� by its initial expectation value �hz�=Tr
hz��0�� and intro-
duce the effective electron Zeeman splitting

� = �z − �z + �hz� 	 �z + �hz� . �9�

This replacement assumes that the initial state does not
change significantly and is valid up to corrections suppressed
by � /� compared to the dynamics under Heff. Here �
=��hz

2�− �hz�2 is the initial width of hz. For an unpolarized
equilibrium �infinite temperature� nuclear-spin state we have
�
A /�N limiting the range of validity to ��A /�N,

V �
1

2��Sz

k�l

AkAlIk
+Il

− +
1

2

k

Ak
2�Sz − Ik

z�� , �10�

where the terms k= l are excluded in the sum over k and l. In
the remainder of this paper, we will discuss the dynamics of
the Overhauser field both at short and at long times in the
regimes where a perturbative treatment in V is appropriate.
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IV. SHORT-TIME EXPANSION

With respect to the Zeno effect as discussed in Sec. II, our
main interest lies in the short-time behavior of the

Overhauser-field z component �hz�t��, where h� is defined in
Eq. �6�. To calculate �hz�1 and �hz�2 �see Eq. �1��, we expand

�hz�t�� = Tr
hz exp�− iHt���0�exp�iHt�� �11�

at short times. The first term �hz�0��=Tr
hz��0�� gives the
expectation value at time zero, while the t-linear term is pro-
portional to �hz�1=−i Tr
hz�H ,��0���. Using the cyclicity of
the trace we find that Tr
hz�H ,��0���=Tr
���0� ,hz�H�. Writ-
ing ��0�=�e�0� � �I�0� we have, for an initial nuclear-spin
state �I�0� without transverse coherence, ��I�0� ,hz�=0 and
thus the t-linear term vanishes. It might be possible to extend
this result to more general randomly correlated initial
nuclear-spin states, where terms involving transverse coher-
ence or correlations are negligibly small due to a random
phase.70,71

To determine the frequency of projective measurements
required to induce a Zeno effect, we are interested in �hz�2
=−Tr
hz�H , �H ,��0����. We calculate �hz�2 below using the
effective Hamiltonian Heff as derived in Sec. III. The range
of validity is limited by higher-order terms in the effective
Hamiltonian, which are proportional to �h+h−�n /��n+1� with
n=2,4 , . . . . These higher-order terms give corrections to
�hz�2, which are suppressed by a factor of �A /�N��n. Thus
the results for �hz�t�� up to O�t2� given below are valid in the
regime ��A /�N. Using �hz ,H0�=0, we may simplify �hz�2
considerably and we find for an arbitrary electron-spin state,

�hz�2 = −
1

8�2TrI
hz��I�0�,h+h−�h+h−� . �12�

To further simplify, we assume a product initial state of the
form

��0� = �e�0� � �I�0� = �e�0��k�Ik
, �13�

�Ik
= 1/2 + fkIk

z ; fk � fk�0� = 2�Ik
z�0�� . �14�

With this initial state we find

�hz�2 = −
1

4�2

kl

fkAk
2Al

2 TrI�hz �
j�k,l

�1

2
+ f jIj

z��Ik
z − Il

z�� .

�15�

Evaluating the commutators and the trace, we find for the
decay of the Overhauser-field mean value �hz�t�� up to cor-
rections of O�t4�,

�hz�t�� = �hz�0�� −
t2

�8��2

kl

Ak
2Al

2�Ak − Al��fk − f l� . �16�

We note that both for uniform coupling constants Ak=A /N
and for uniform polarization fk= p , ∀k, the t2 term vanishes.
This is, in fact, what one would expect, since Heff only leads
to a redistribution of polarization, and both for uniform po-
larization and uniform coupling constants, such a redistribu-
tion does not affect hz. Rewriting the sum in Eq. �16� we
obtain �again up to corrections of O�t4��

�hz�t��
�hz�0��

= 1 − c
t2

�e
2 , �e =

N3/2�

A2 , �17�

with the numerical factor c only depending on the distribu-
tion of coupling constants through �k=NAk /A and the initial
polarization distribution fk through

c =
1

32Nc0


kl

�k
2�l

2��k − �l��fk − f l� , �18�

where c0=
kfk�k. We note that, up to the factor c �see Fig.
2�, the time scale �e agrees with a previous rough estimate60

for the time scale of nuclear-spin dynamics under the
electron-mediated nuclear-spin interaction. In Table I we
give �e for a variety of values of the number of nuclear spins
N and of �=�z−�z+ �hz�.

The coupling constants Ak have a different dependence on
k, depending on the dimension d and the exponent q in the
electron envelope wave function through27 Ak=A0e−�k / N�q/d

.
For a donor impurity with a hydrogenlike exponential wave
function we have d=3, q=1, and d /q=3, whereas for a two-
dimensional quantum dot with a Gaussian envelope function
we have d=2, q=2, and d /q=1. In Fig. 2 we show the con-
stant c for the case d /q=1 and a particular choice of the
polarization distribution. We give the dependence on d /q in
the inset of Fig. 2. While c is independent of N for N
�100, it changes considerably depending on the initial
nuclear-spin state, which is parameterized by the fk. Since
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1 1.5 2 2.5 3
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c

N/Np

C N/Np = 1

FIG. 2. Numerical prefactor c �given in Eq. �18�� of the t2 term
in the decay of the Overhauser-field mean value �hz�t��. While c
turns out to be independent �for N�100 in the case shown accord-
ing to numerical summation� of the number N of nuclear spins
within a Bohr radius of the electron envelope wave function, it does
depend on the type of structure and the initial polarization. We show
the case of a two-dimensional quantum dot with a Gaussian electron
envelope �d /q=1�. The dependence on the initial polarization is
parametrized by N /Np, where Np is the number of nuclear spins that
are polarized substantially �see text�. Inset: Dependence of c on the
ratio d /q for N /Np=1. We see that, e.g., for a donor impurity with
a hydrogenlike wave function �d /q=3� the prefactor c is more than
three orders of magnitude smaller compared to the two-dimensional
lateral quantum dot with d /q=1.
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there are neither experimental data nor theoretical calcula-
tions on the shape of the polarization distribution, we assume
for the curves in Fig. 2 that it has the same shape as the
distribution of coupling constants Ak, but with a different
width reflected in the number of nuclear spins Np that are
appreciably polarized. The motivation for this choice is that
if polarization is introduced into the nuclear-spin system via
electron-nuclear-spin flip flops, the probability for these flip
flops is expected to be proportional to some power of Ak /A0.
We denote the degree of polarization at the center by
p� �−1,1�. We may thus write fk= pe−�k / Np�q/d

. We see in Fig.
2 that c grows monotonically with N /Np, i.e., a localized
polarization distribution �N /Np�1� decays more quickly
than a wide spread one �N /Np�1�.

In the context of state narrowing,59–61 the short-time be-
havior of the width of the Overhauser field ��t�
=��hz

2�t��− �hz�t��2 is also of interest. Nuclear spin state nar-
rowing, i.e., the reduction in �, extends the electron-spin
decoherence time. Repeating the above calculation for �hz

2�t��
and using the result for �hz�t�� we find �up to corrections of
O�t4�� for the variance of the Overhauser field,

�2�t� = �2�0��1 + c�

t2

�e
2� , �19�

with the range of validity ��A /�N, limited by higher-order
corrections to the effective Hamiltonian as in the case of
�hz�t��. Here, the dimensionless constant c� is given by

c� =
1

16Nc�0


kl

�k
2�l

2��k − �l��fk − f l��fk�k + f l�l� , �20�

where c�0=
k�k
2�1− fk

2�. Taking the square root of �2�t� and
expanding it for c�t2 /�e

2	1 we find for the width �up to
corrections of O�t4��,

��t� = ��0��1 + c�

t2

2�e
2� . �21�

Thus, also for the width of the Overhauser field, the initial
dynamics is quadratic in time with the same dependence on
A, N, and � as the mean.

Special case: Full polarization

In this section we analyze the special case of a fully po-
larized nuclear-spin system where the effective Hamiltonian

derived in Sec. III gives no dynamics, and thus the correc-
tions due to the transfer of polarization from the electron to
the nuclei become relevant. We thus must return to the full
Hamiltonian in Eq. �5�. Using the fact that the total spin
Jz=Sz+
kIk

z is a conserved quantity, we transform into a ro-
tating frame where the Hamiltonian takes the form27

H� = ��̃z + hz�Sz +
1

2
�h+S− + h−S+� , �22�

with �̃=�−�z. To have any dynamics for a fully polarized
nuclear-spin system �all spins �↑ ��, the initial state of the
electron must be s⇓�⇓ �+s⇑�⇑ � with s⇓�0. Since the �⇑ � part
gives no dynamics we consider ���0��= �⇓ ; ↑ ↑ . . .↑�. At any
later time we may thus write

���t�� = a�t����0�� + 

k

bk�t��⇑ ;↑↑ . . . ↑↓k↑ . . . ↑� , �23�

with a�0�=1 and bk�0�=0, ∀k. The same case was studied in
Refs. 67 and 68. However, this study was performed from
the point of view of electron-spin decoherence. For the ex-
pectation value of �hz�t��, we find, in terms of a�t� and bk�t�,

�hz�t�� = ���t��hz���t�� =
A

2
− 


k

�bk�t��2Ak, �24�

where we have used the normalization condition �a�t��2
+
k�bk�t��2=1. Using the time-dependent Schrödinger equa-
tion i�t���t��=H����t��, we obtain the differential equations
for a�t� and bk�t�,

ȧ�t� =
i

4
�2�z + A�a�t� −

i

2

k

bk�t�Ak, �25�

ḃk�t� = −
iAk

2
a�t� −

i

4
�2�z + A − 2Ak�bk�t� . �26�

Inserting a power-series ansatz a�t�=
la
�l�tl and bk�t�

=
lbk
�l�tl into these equations and comparing coefficients

yield recursion relations of the form

a�l+1� =
i

4�l + 1�
�2�z + A�a�l� −

i

2�l + 1�
k

bk
�l�Ak, �27�

TABLE I. This table gives explicit values for the time scale �e of the t2 term in the short-time expansion
of �hz�t�� �see Eq. �17��. We give �e for various values of the number of nuclear spins N and of �=�z−�z

+ �hz� for I=1 /2 �Ref. 69�. When �=A /�N we are at the lower boundary of � values for which the result for
�e is valid. The parameters used are relevant for a lateral GaAs quantum dot: A=90 �eV and g=−0.4.

�e at �e at �e at �e at �e at

N A /g�B
�N �=A /�N 100 mT 1 T 2 mT 5 T

1�103 49 mT 3 ns 6 ns 60 ns 119 ns 297 ns

1�104 16 mT 29 ns 188 ns 2 �s 4 �s 9 �s

1�105 4.9 mT 292 ns 6 �s 60 �s 119 �s 297 �s

1�106 1.6 mT 3 �s 188 �s 2 ms 4 ms 9 ms
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bk
�l+1� = −

iAk

2�l + 1�
a�l� −

i

4�l + 1�
�2�z + A − 2Ak�bk

�l�. �28�

Iterating these recursion relations using a�0�=1 and bk�0�
=0, ∀k, we find, neglecting corrections of O�t4�,

�hz�t��
�hz�0��

= 1 −
1

2A



k

Ak
3t2. �29�

For the case of a two-dimensional quantum dot with Gauss-
ian envelope wave function where we have Ak=Ae−k/N /N, we
find, evaluating 
kAk

3 by turning it into an integral in the
continuum limit N�1 �again up to corrections of O�t4��,

�hz�t��
�hz�0��

= 1 −
1

6
� t

�c
�2

, �30�

where �c=N /A. To obtain the range of validity for this result
we go to higher order in t. Again for the case of a two-
dimensional quantum dot with Gaussian envelope wave
function we find up to O�t4�, neglecting terms that are sup-
pressed by O�1 /N� in the t4 term,

�hz�t��
�hz�0��

= 1 −
1

6
� t

�c
�2

+
1

18
� t

�4
�4

. �31�

Here, �4=2�N /�A�2�z+A�. This shows that in some cases
the higher-order terms in the short-time expansion can have a
considerably shorter time scale. Comparing the short-time
expansion with a calculation for �Sz� in the case of uniform
coupling constants67 suggests that the full dynamics contain
oscillations with frequency 
�z+A /2, thus, limiting the
range of validity of the short-time expansion to t	 ��z
+A /2�−1.

To finish our discussion on the short-time dynamics and
on the Zeno effect, we point out that the main result of this
section, namely, the time scale �e and the constant c �Eqs.
�17� and �18�� for the quadratic term in the short-time expan-
sion of �hz�t�� is what sets the condition on the repetition rate
�m as discussed in Sec. II �see Eq. �4��. With this we move on
to the study of the long-time behavior. We first show the
results of a Dyson-series expansion in Sec. V and in Sec. VI
we treat the problem using the generalized master equation
�GME� showing that the Dyson-series expansion gives the
leading-order contribution in A /�.

V. DYSON-SERIES EXPANSION

In this section we calculate the expectation value of the
Overhauser field �hz�t�� in a Dyson-series expansion up to
second order in the interaction V. This allows us to obtain the
full time dynamics of �hz�t��. Since the Dyson-series expan-
sion is not a controlled expansion �it leads to secular diver-
gences in time at higher order�, we will only see from the
generalized master-equation calculation in Sec. VI that the
Dyson-series result gives the correct leading-order contribu-
tion in A /�. Thus, the results in this section are expected to
be valid in the regime ��A. The results in this section can
also be obtained from the generalized master-equation ap-
proach presented in Sec. VI. However, the Dyson-series cal-
culation is more accessible.

We transform all operators into the interaction picture by

Õ=eiH0tOe−iH0t. In the interaction picture we have �hz�t��
=Tr
h̃z�̃�t�� with h̃z=hz since �H0 ,hz�=0. Expanding �̃�t� in a
Dyson series we find72

�̃�t� = ��0� − i�
0

t

dt��Ṽ�t��,��0��

− �
0

t

dt��
0

t�
dt��Ṽ�t��,�Ṽ�t��,��0��� + O�Ṽ3� ,

�32�

where

Ṽ�t� � eiH0tVe−iH0t =
Sz

2�


k�l

eiSz�Ak−Al�tIk
+Il

−. �33�

We assume again the same initial state as in Sec. IV and thus

the term that is linear in Ṽ will drop out under the trace as it
only contains off-diagonal terms. From the remaining two
terms we find

�hz�t�� = �hz�0�� +
1

8�2 

k�l

Ak
2Al

2�fk − f l�
Ak − Al

��cos��Ak − Al�
t

2
� − 1� . �34�

We first verify that this result is consistent with the short-
time expansion in Sec. IV. For this we use Ak�A0
A /N and
thus for times t	�c=N /A we may expand the cosine in the
above expression recovering �to second order in t� the result
in Eq. �16�. For the full time dynamics we note that the sum
over cosines leads to a decay on a time scale of �c=N /A
since for t��c the different cosines interfere destructively.
We illustrate this with an example: For a particular choice of
the initial polarization distribution �d /q=1 and Np=N� we
may evaluate the sum in Eq. �34� in the continuum limit and
find

�hz�t��
�hz�0��

= 1 −
p

8N

A2

�2g�t/�c� . �35�

The function g�t� is explicitly given by

g�t� =
1

t4�t4 − 16t2 + 64t sin� t

2
� − 256 sin2� t

4
�� , �36�

with g�0�=0 and g�t→��=1. We thus find a power-law de-
cay on a time scale �c by an amount of O�1 /N�. Since the
sum of cosines in Eq. �34� decays, the remaining time-
independent sum gives the stationary value �up to the
Poincaré recurrence time73�

�hz�stat

�hz�0��
= 1 − �A

�
�2 1

4N2c0


k�l

�k
2�l

2�fk − f l�
�k − �l

. �37�

For a system with a large number of nuclear spins N�1 and
a sufficiently smooth polarization distribution, this stationary
value differs only by a term of O�1 /N� from the initial value,
i.e., �hz�stat / �hz�0��=1−O�1 /N�. This can be seen in Fig. 3
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where we show the N dependence of 1− �hz�stat / �hz�0��, i.e.,
the part by which �hz� decays. The parameters in Fig. 3 are
taken for a three-dimensional defect center with a hydrogen-
like electron envelope �d /q=3� and the initial polarization
N /Np=0.5 as described in Sec. IV. For this choice of polar-
ization distribution the decay is O�1 /N�. We also find a
O�1 /N� behavior for other values of the parameters d /q and
N /Np and thus expect this to be generally true for a smoothly
varying initial polarization distribution. The inset of Fig. 3
shows the full-time dynamics of �hz�t�� as given in Eq. �35�
for d /q=1, N�1, and N /Np=1.

We note that the fourth order of a Dyson-series expansion
gives secular terms �diverging in t�. We thus move on to treat
the long-time behavior using a master-equation approach,
which avoids these secular terms and shows that the Dyson-
series result gives the correct leading-order term in A /�.

VI. GENERALIZED MASTER EQUATION

In this section we study the decay of the Overhauser-field
mean value �hz�t�� using the Nakajima-Zwanzig GME in a
Born approximation. The results in this section are valid in
the regime ��A since higher-order corrections to the Born
approximation are suppressed by a factor of �A /��2.

We start from the GME,73 which for Pk��0�=��0� reads

Pk�̇�t� = − iPkLPk��t� − �
0

t

dt�PkLe−iQL�t−t��QLPk��t�� ,

�38�

where L=L0+LV is the Liouville superoperator defined as
�L0+LV�O= �H0+V ,O�. The projection superoperator Pk
must preserve �Ik

z�t�� and we choose it to have the form Pk

=�e�0�Tre � Pdk� l�k�Il
�0�TrIl

, where Pdk projects onto the
diagonal in the subspace of nuclear spin k and is defined as
PdkO=
sk=↑,↓�sk��sk��sk�O�sk�. Further, Q=1− Pk. In a stan-
dard Born approximation and using the same initial condi-
tions as above, i.e., a product state and no transverse coher-
ence in the nuclear-spin system, we obtain the following
integrodifferential equation for �Ik

z�t��:

�İk
z�t�� = −

Ak
2

8�2�
0

t

d� 

l,l�k

Al
2 cos� �

2
�Ak − Al��

���Ik
z�t − ��� − �Il

z�0��� . �39�

The Born approximation goes to order of LV
2 in the expansion

of the self-energy. Higher-order corrections in LV are esti-
mated to give contributions to the right-hand side of Eq. �39�
that are suppressed by a factor of �A /��2. We expect the
results of this section to be valid at least for ��A, although
it could in principle happen that �as in the case of the decay
of �Sz�t�� �Ref. 27�� the result for the stationary value has a
larger regime of validity. On the other hand, it cannot be
generally excluded that higher-order contributions could
dominate at sufficiently long times. Integrating Eq. �39� we
find the formal solution

�Ik
z�t�� = �Ik

z�0�� −
A2

�2

�k
2

8
�

0

t

dt��
0

t�
d� 


l,l�k

Al
2 cos� �

2
�Ak − Al��

���Ik
z�t� − ��� − �Il

z�0��� . �40�

This shows that �Ik
z�t��= �Ik

z�0��+O��A /��2� and we may thus
iterate this equation and replace �Ik

z�t�−��� in the integral by
�Ik

z�0��. This implies, up to corrections of O��A /��4�,

�Ik
z�t�� = �Ik

z�0�� −
Ak

2

16�2 

l,l�k

Al
2�fk − f l��

0

t

dt��
0

t�
d�

�cos� �

2
�Ak − Al�� . �41�

Performing the integrals and summing over the �Ik
z�t��

weighted by their coupling constants Ak, we recover the
Dyson-series result in Eq. �34�. This shows that the Dyson-
series expansion gives the leading-order contribution in A /�.

For the analytical solution of Eq. �39� in the stationary
limit we perform a Laplace transformation, solve the result-
ing equation in Laplace space, and calculate the residue of
the pole at s=0, which yields �up to the recurrence time�

�Ik
z�stat = lim

T→�

1

T
�

0

T

�Ik
z�t��dt

= lim
s→0

s�Ik
z�s�� =

1

Zk



l

Pk�l��Il
z�t = 0�� , �42�

with Zk=
lPk�l�. We see that �Ik
z�stat is determined by weight-

ing the neighboring �Il
z�t=0�� with the probability distribu-

tion Pk�l� /Zk, which is explicitly given by

0.108
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〈h
z
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at

〈h
z
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)〉)

1 − pA2

8Nω2

FIG. 3. In this figure we show the N dependence of
1− �hz�stat / �hz�0�� �see Eq. �37��, i.e., the part by which �hz� decays
in units of pA2 /N�2, in the regime ��A. This plot is for a three-
dimensional defect center with a hydrogenlike electron envelope
�d /q=3� and the initial polarization is parameterized by N /Np

=0.5 as described in Sec. IV. For this choice of polarization distri-
bution the decay is O�1 /N�. The inset shows the full time dynamics
of �hz�t�� / �hz�0�� as given in Eq. �35� for d /q=1, N�1, and
N /Np=1. We see that the decay occurs on a time scale of
�c=N /A.
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Pk�l� = �Al
2/�Ak − Al�2: l � k ,

2�2/Ak
2: l = k .

� �43�

We point out that �Ik
z�stat can be either smaller or larger than

�Il
z�t=0�� and that 
k�Ik

z�stat=
k�Il
z�t=0�� since the total spin

is a conserved quantity. Again expanding the result in Eq.
�42� to leading order in A /� and summing over the nuclear
spins weighted by their coupling constants Ak, we recover
the same result found in the Dyson-series calculation in Eq.
�37�. Intuitively one would expect a decay even at high fields
�although a very slow one� to a state with uniform polariza-
tion. The fact that our calculation shows no such decay sug-
gests that the Knight-field gradient, i.e., the gradient in the
additional effective magnetic field seen by the nuclei, due to
the presence of the electron, is strong enough to suppress
such decay if the flip-flop terms are sufficiently suppressed.
Applying a large magnetic field thus seems to be an efficient
strategy to prevent the Overhauser field from decaying.

As a side remark, we would like to point out that in this
regime of only partial decay, repeated measurements on the
Overhauser field can actually enhance the decay of �hz�t��.
This occurs when the measurements are performed at inter-
vals longer than the time scale for decay to the stationary
value ��c=N /A as discussed in Sec. V�. Performing a projec-
tive measurement at a time t��c resets the initial condition
and thus again a small decay occurs. Repeating these mea-
surements at intervals longer than �c thus allows for a decay
of �hz�t�� to zero.

VII. CONCLUSION

We have studied the dynamics of the Overhauser field
generated by the nuclear spins surrounding a bound electron.
We focused our analysis on the effect of the electron-
mediated interaction between nuclei due to the hyperfine in-
teraction. At short times we find a quadratic initial decay of
the Overhauser-field mean value �hz�t�� on a time scale �e
=N3/2� /A2. Performing repeated strong measurements on hz
leads to a Zeno effect with the decay changing from qua-
dratic to linear with a time scale that is prolonged by a factor
of �e /�m, where �m is the time between consecutive measure-
ments. In Secs. V and VI we have addressed the long-time
decay of �hz�t�� using a Dyson-series expansion and a gen-
eralized master-equation approach. Both show that �hz�t��
only decays by a fraction of O�1 /N� for a sufficiently smooth
polarization distribution and large magnetic field.

Overall, the strategy to preserve the Overhauser field con-
tains two tools. The first is to apply a strong external mag-
netic field ���A�, which limits the decay to a fraction of
O�1 /N�. In case a strong magnetic field is not desirable or
achievable, the second tool is to make use of the Zeno effect
and perform repeated projective measurements on the Over-
hauser field leading to a slow down of the decay.

It remains a subject of further study beyond the scope of
this work whether, and on what time scale, the combination
of electron-mediated interaction and direct dipole-dipole in-
teraction may lead to a full decay of the Overhauser field.
Another interesting question concerns the distribution of
nuclear polarization within a quantum dot or defect center

and its dependence on the method that is used to polarize the
system.
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APPENDIX A: ESTIMATION OF DIPOLE-DIPOLE
CONTRIBUTION

In this appendix we estimate the time scale arising from
the direct secular �terms conserving Iz,tot=
kIk

z� dipole-dipole
interaction in the short-time expansion of the Overhauser-
field mean value �hz�t��. This gives us the range of validity of
our calculation in the main text that only took into account
the electron-mediated interaction between nuclei. Let us thus
consider the situation where the external magnetic field is
very high such that the electron-mediated flip-flop terms are
fully suppressed. In this case the Hamiltonian has the form
Hdd=H0,dd+Vdd with

H0,dd = �zSz + �z

k

Ik
z + Szhz − 2


k�l

bklIk
zIl

z, �A1�

Vdd = 

k�l

bklIk
+Il

−. �A2�

Here, bkl=�I
2�3 cos2��kl�−1� /4rkl

3 with �kl being the angle be-
tween a vector from nucleus k to nucleus l and the z axis, and
rkl being the distance between the two nuclei.64 Further, �I is
the nuclear gyromagnetic ratio. For the short-time expansion,
only the off-diagonal terms are relevant, since �hz ,H0�
= ���0� ,H0�=0. These off-diagonal terms in the case of the
electron-mediated interaction are Sz
k�lAkAlIk

+Il
− /2� �see Eq.

�10��. Replacing AkAl /2� with bkl in the result for the short-
time expansion in Eq. �16� and also taking into account the
factor of 1/4 that comes from Sz

2 in the electron-mediated
case we find

�hz�t��dip-dip = �hz�0�� −
t2

4 

kl

bkl
2 �Ak − Al��fk − f l� . �A3�

To estimate, we restrict the sum to nearest neighbors as bkl
falls off with the third power of the distance between the two
nuclei. Assuming fk= �Ak /A0�N/Np we find up to corrections of
O�t4�,

�hz�t��dip-dip

�hz�0��
	 1 −

t2

�d
2 , �d =

�NpN

b
, �A4�

with b being the nearest-neighbor dipole-dipole coupling.
For GaAs we have b�103 s−1 �with �I /2�	10 MHz /T
�Ref. 74��. For NNp�1 we have �d�10−3 s.69 In the
magnetic-field range shown in Table I we thus have �d
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��e /�c, which justifies neglecting the direct dipole-dipole
coupling in the short-time expansion.

APPENDIX B: MEASUREMENT ACCURACY

The description of the Zeno effect in Sec. II relied on the
assumption that the measurements on hz set all off-diagonal
elements of the density matrix to zero. This assumption re-
quires, on one hand, a perfect measurement accuracy for hz
�we discuss deviations from that below�, but on the other
hand it also requires the hz eigenstates to be nondegenerate.
For nondegenerate hz eigenstates a measurement of hz fully
determines the polarization distribution fk and we may thus
write �I after the measurement again as a direct product with
�Ik

��m�=1 /2+ fk��m�Ik
z. After the measurement, we thus again

have the same time evolution for �hz�t�� as given in Eq. �16�,
but with fk replaced by fk��m�. Iterating Eq. �16� for the case
of m consecutive measurements at intervals �m one obtains
Eq. �3�.

Instead of the idealized assumption of a projective mea-
surement we now allow imperfect measurements. To de-
scribe these measurements we use a so-called positive opera-
tor valued measure �POVM�.54 In a general POVM
measurement the density matrix changes according to54

� → �� =� �Fy��Fydy , �B1�

when averaging over all possible measurement outcomes y.
The probability to measure outcome y is given by P�y�
=Tr
�Fy� and the condition �dyFy =1 ensures that the prob-
abilities sum to unity. We consider the nuclear density matrix
�I in a basis of hz eigenstates �n� with hz�n�=hz

n�n�. We denote
the matrix elements of �I by �I�n ,m�= �n��I�m�. For the fol-
lowing description we assume that the diagonal of the
nuclear-spin density matrix before the measurement is
Gaussian distributed around its mean value �hz� with a width
�, i.e.,

�I�n,n� =
1

�2��
exp�−

�hz
n − �hz��2

2�2 � . �B2�

For an unpolarized equilibrium �infinite temperature� state,
the width is �
A /�N. Here, � can take any value. We con-
sider a measurement with a Gaussian line shape of width �.
Since we aim to describe measurements that at least partially
project the nuclear-spin state, we have �	�. The POVM
that describes such a measurement is given by

Fy = 

n

f�n,y��n��n� , �B3�

with

f�n,y� =
1

�2��
exp�−

�hz
n − �hz� − y�2

2�2 � . �B4�

It is straightforward to calculate the probability P�y� for ob-
taining the measurement result �hz�+y,

P�y� =
1

�2���2 + �2�
exp�−

y2

2��2 + �2�� . �B5�

Clearly, the probabilities add up to one ��P�y�dy=1� as they
should. For the diagonal of the nuclear-spin density matrix
after a measurement with outcome �hz�+y we find

�I��n,n;y� =
�I�n,n�f�n,y�

P�y�
=

�	�

f�n,y� . �B6�

Also, when weighting the �I��n ,n ;y� with their probabilities
for occurring, we find ��I��n ,n ;y�P�y�dy=�I�n ,n�. Using
Eq. �B1� we thus find for the matrix elements after a mea-
surement, when averaging over all possible measurement
outcomes,

�I�n,m� → �I��n,m� = �I�n,m�� �f�n,y�f�m,y�dy ,

�B7�

which leads to

�I��n,m� = �I�n,m�exp�−
�hz

n − hz
m�2

8�2 � . �B8�

To reduce the off-diagonal elements, the measurement accu-
racy must be better than the difference in eigenvalues. In the
limit �→0 a projective measurement is recovered, which
sets all off-diagonal elements to zero. Up to t2 in the short-
time expansion, only off-diagonal elements between states
that differ at most by two flip flops can become nonzero.
Thus, to have at least a partial Zeno effect55 resulting from
the off-diagonal elements being partially reduced, the re-
quirement on the measurement accuracy is �� �hz

n−hz
m� with

�n�= Ik
+Il

−Ip
+Iq

−�m�. For coupling constants Ak=Ae−k/N /N, we
have typically hz

n−hz
m�A /N. Besides suppressing the off-

diagonal elements of �I through a measurement, there are
also “natural” decoherence mechanisms, such as inhomoge-
neous quadrupolar splittings, electron-phonon coupling, or
spin-lattice relaxation that can lead to a reduction in the off-
diagonal elements of �I.

As mentioned earlier, there are several proposals59–61 to
implement a projective measurement of hz. All of these pro-
posed techniques rely on the fact that the dynamics of the
electron spins confined in the dots depends on the Over-
hauser field. Thus, a measurement of the electron-spin dy-
namics allows one to indirectly measure hz. The proposal in
Ref. 59 is designed for optically active self-assembled quan-
tum dots and makes use of an hz-dependent frequency shift
in an exciton transition. Numerical calculations for this
method59 show that an increase in the electron-spin coher-
ence time by a factor of 100 is achievable with a preparation
time of 10 �s, which corresponds to a measurement accu-
racy of �=�0 /100=A /100�N. The proposal in Ref. 60 con-
siders gate-defined double quantum dots, such as the ones in
Refs. 11, 34, 75, and 76. The measurements of electron-spin
dynamics are achieved through spin-to-charge conversion
and detection of the charge by a nearby quantum point con-
tact �QPC�. An experimental recipe in the context of the
setup in Ref. 11 is presented in Ref. 77. The narrowing �mea-
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surement accuracy� achievable with this method essentially
relies on a good time resolution �better than the time scale
for electron-spin dynamics� of the QPC charge detection,
which by now has reached a few hundred nanoseconds.78

An alternative read-out scheme is to use a double dot in
the spin-blockade regime,13 where one spin, say the one in
the left dot, is manipulated, while the one in the right dot is
only needed for the readout. The system is initialized to the
triplet �↑↑�, which is spin blocked since the triplet T�0,2�
with two electrons on the right dot is energetically not acces-
sible. The �↓↑� state, however, may tunnel to the S�0,2� sin-
glet and from there one electron can tunnel to the right lead
if energetically allowed, leaving the two-electron system in a

�0,1� state. The efficiency of this read-out scheme generally
depends on a large separation of the transition rates for the
�↑ � and the �↓ � states. If such a large separation, i.e., a good
spin blockade, can be achieved, this read-out method offers
the potential for rapid consecutive electron-spin measure-
ments and thus also for accurate measurements of the Over-
hauser field. A variant of this scheme is to adiabatically pulse
the double dot between different two-electron-spin states and
to use a nearby QPC for readout �see, e.g., Refs. 26 and 79�.
A detailed analysis of using this read-out scheme for projec-
tive measurements of hz has, to our knowledge, not been
undertaken yet and is beyond the scope of this work.
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